High Energy Photoproduction at JPAC

Alessandro Pilloni

on behalf of JPAC

Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions JLab, November 3rd, 2017

Outline

π^0 photoproduction

Mathieu, Fox, Szczepaniak (JPAC), PRD92, 074013

Mathieu, Nys, AP, Fernández-Ramírez, Jackura, Mikhasenko, Pauk, Szczepaniak, Fox, (JPAC), arXiv:1708.07779

- η photoproduction
 Nys, Mathieu, Fernández-Ramírez, Hiller Blin, Jackura,
 Mikhasenko, AP, Szczepaniak, Fox, Ryckebusch (JPAC), PRD95, 034014
- η' photoproduction
 Nys, Mathieu, Fernández-Ramírez, Jackura, Mikhasenko,
 AP, Szczepaniak, Fox (JPAC), PLB774, 362-367
- πΔ photoproduction
 Nys, Mathieu, Fernández-Ramírez, Jackura, Mikhasenko,
 AP, Sherrill, Ryckebusch, Szczepaniak, Fox (JPAC), arXiv:1710.09394

Slides stolen from J. Nys and V. Mathieu

 π^0 , η photoproduction

Duality

Low energy: baryon resonances

High energy: Regge exchange

Finite energy sum rules

CGLN basis and scalar amplitudes

$$A_{\lambda';\lambda\lambda_{\gamma}}(s,t) = \overline{u}_{\lambda'}(p') \left(\sum_{k=1}^{4} A_k(s,t) M_k\right) u_{\lambda}(p)$$

$$M_k \equiv M_k(s, t, \lambda_\gamma)$$

$$M_{1} = \frac{1}{2} \gamma_{5} \gamma_{\mu} \gamma_{\nu} F^{\mu\nu} ,$$

$$M_{2} = 2 \gamma_{5} q_{\mu} P_{\nu} F^{\mu\nu} ,$$

$$M_{3} = \gamma_{5} \gamma_{\mu} q_{\nu} F^{\mu\nu} ,$$

$$M_{4} = \frac{i}{2} \epsilon_{\alpha\beta\mu\nu} \gamma^{\alpha} q^{\beta} F^{\mu\nu}$$

- No kinematic singularities
- No kinematic zeros
- Discontinuities:
 - Unitarity cut
 - Nucleon pole

•

 $\gamma p \rightarrow \eta p$, Dispersive integral

Natural contributions

$\gamma p \rightarrow \eta p$, Unnatural contributions

A. Pilloni – High Energy Photoproduction at JPAC

1.0

```
\gamma p \rightarrow \eta p, Results
```


$\gamma p \rightarrow \pi^0 p$, Results SAID MAID A'_2 ANL-O A_1 A_3 A_4 JuBo BnGa Disagreement between models at high W2 Im $v^3 A_1^{(\pi 0)}(v, t=0)$ Im $v^2 A_3^{(\pi 0)}(v, t=0)$ SAID 20 MAID ANL-O Im $v^3 A_4^{(\pi 0)}(v, t=0)$ JuBo Im $v^3 A_2^{(\pi 0)}(v, t=0)$ 15 ⁶ 10⊦ GeV^{-3} GeV^{-2} BnGa $^{-2}$ -1_____ 1.2 1.4 1.6 1.0 1.2 1.4 2.0 1.8 2.0 1.0 1.2 1.6 1.6 1.8 1.4 1.8 2.0 1.0 1.2 1.4 1.6 1.8 W (GeV) W (GeV) W (GeV) W (GeV) 5.0 SAID SAID 0.2 Dividing out the known 4.0 $\gamma p \rightarrow \pi^0 p$ dependence of k, 3.0 $s_{\rm max} = (2.4~{\rm GeV})^2$ 0.0 $\hat{\beta}_1(t)$ $\hat{\beta}_4(t)$ the residues are indeed fairly 2.0 = 3k = 5 $\begin{array}{l} k=3\\ k=5 \end{array}$ -0.2 indipendent 1.0 *k* = 7 $\gamma p \rightarrow \pi^0 p$ k = 9*k* = 7 $s_{\rm max} = (2.4 {\rm ~GeV})^2$ 0.0 -0.4k = 9-1.0

1.0

A. Pilloni – High Energy Photoproduction at JPAC

0.8

1.0

0.0

0.2

0.4

0.6

-t (GeV²)

0.8

0.6

-t (GeV²)

0.0

0.2

0.4

2.0

 $\gamma p \rightarrow \pi^0 p$ beam asymmetry

 \mathbf{v}

GlueX + Mathieu & Nys, PRC95, 042201

The beam asymmetry confirms a small contribution of unnatural exchanges, suggesting the dip at $t = -0.5 \text{ GeV}^2$ to be filled by some rescattering (cut)

η vs. η' beam asymmetries

Dominant exchanges: ρ , ω Variations: b, h radiative decays

Sizable deviation from 1:

- Non-negligible contributions from hidden strangeness
- Signicant deviation from the quark model description

$\pi\Delta$ photoproduction

Data: Boyarski (1968), Quinn (1979)

- Regge poles and cuts included
- Poor man absorption for π exchange
- Photocouplings extracted from radiative decays, $\beta_{+,1}^{a_2,\gamma\pi} \sim 1.8 \times \beta_{+,1}^{\rho,\gamma\pi}$ and $\beta_{+,1}^{\pi,\gamma\pi} \sim 4.4 \times \beta_{+,1}^{b,\gamma\pi}$ instead of the factor of 3 suggested by VMD
- Bottom vertices $g_{
 ho p\Delta}$, $g_{a_2p\Delta}$ degenerate

•
$$\alpha_{\rho} = \alpha_{a_2}$$
 (weak degeneracy)

Polarized σ and beam asymmetry

Beam asymmetry at GlueX

 \square

(error bars on points: statistical only)

Conclusions

- Joint Physics Analysis Center is a joint effort between theorists and experimentalists to work together to make the best use of the next generation of very precise data taken at JLab and in the world
- Codes are public and available on http://www.indiana.edu/~jpac/
- Many other ongoing projects (both for meson and baryon spectroscopy, and for high energy observables), with a particular attention to producing complete reaction models for the golden channels in exotic meson searches

BACKUP

Hadron Spectroscopy

Hadron Spectroscopy

Hadron Spectroscopy

Improvement needed! With great statistics comes great responsibility!

Joint Physics Analysis Center

- Joint effort between theorists and experimentalists to work together to make the best use of the next generation of very precise data taken at JLab and in the world
- Created in 2013 by JLab & IU agreement
- It is engaged in education of further generations of hadron physics practitioners

Joint Physics Analysis Center

INDIANA UNIVERSITY BLOOMINGTON

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Interactive tools

- Completed projects are fully documented on interactive portals
- These include description on physics, conventions, formalism, etc.
- The web pages contain source codes with detailed explanation how to use them. Users can run codes online, change parameters, display results.

http://www.indiana.edu/~jpac/

Joint Physics Analysis Center					
	HOME PROJECTS PUBLICATIONS LINKS				
National Science Foundation					
This project is supported by NSF $\pi N o \pi N$					

Formalism

The pion-nucleon scattering is a function of 2 variables. The first is the beam momentum in the laboratory frame $p_{\rm lab}$ (in GeV) or the total energy squared $s=W^2$ (in ${\rm GeV^2}$). The second is the cosine of

Resources

- Publications: [Mat15a] and [Wor12a]
- SAID partial waves: compressed zip file
- C/C++: C/C++ file
 Input file: param.txt
- Output files: output0.txt , output1.txt , SigTot.txt , Observables0.txt , Observables1.txt
- Contact person: Vincent Mathieu
- Last update: June 2016

The SAID partial waves are in the format provided online on the SAID webpage :

```
p_{
m lab} \quad \delta \quad \epsilon(\delta) \quad 1-\eta^2 \quad \epsilon(1-\eta^2) \quad {
m Re \, PW} \quad {
m Im \, PW} \quad SGT \quad SGR
```

 δ and η are the phase-shift and the inelasticity. $\epsilon(x)$ is the error on x. SGT is the total cross section and SGR is the total reaction cross section

Format of the input and output files: [show/hide] Description of the C/C++ code: [show/hide]

Simulation

Range of th	e running variab	le:			
s in GeV^2	(min max step)	1,2 ‡	6 ‡	0,01	1
$p_{ m lab}$ in GeV	(min max step)	0,1 ‡	4 ‡	0,01	1
u in GeV	(min max step)	0,3 ‡	4 ‡	0,01	÷
t in ${ m GeV}^2$	(min max step)	-1 ‡	0 ‡	0,01	1

The fixed variable:

in GeV ²		0
_{lab} in GeV		5
Start	rese	t

Results

S-Matrix principles

 $A(s,t) = \sum_{l} A_{l}(s)P_{l}(z_{s})$ **Analyticity** $A_{l}(s) = \lim_{\epsilon \to 0} A_{l}(s+i\epsilon)$

These are constraints the amplitudes have to satisfy, but do not fix the dynamics

Resonances (QCD states) are poles in the unphysical Riemann sheets

Three-Body Unitarity

Hu, Mai, Doring, AP, Szczepaniak, EPJA, arXiv:1707.06118

The full implementation of three-body unitarity is a major step for understanding the states appearing in such final states

e.g. $a_1(1260)^+ \rightarrow \pi^+\pi^-\pi^+, \pi_1(1400)^+ \rightarrow \pi^+\pi^-\pi^+, X(3872) \rightarrow D^0\overline{D^0}\pi^0$

We completed the proof of the Amado model, based on the isobar approximation and a Bethe-Salpeter ansatz for the amplitude

See M. Doring's talk at 11:30am

Bound states on the real axis 1st sheet Not-so-bound (virtual) states on the real axis 2nd sheet

Higher energies: Regge exchange

Resonances are poles in *s* for fixed *l* dominate low energy region

Reggeons are poles in l for fixed s dominate high energy region

Production

- 40 Research Papers (Phys.Rev., Phys.Lett, Eur.J. Phys.)
- ~120 Invited Talks and Seminars
- O(10) ongoing analyses
- Summer Schools on Reaction Theory (IU, 2015 and 2017)
- Workshop "Future Directions in Hadron Spectroscopy" (JLab, 2014 and UNAM 2017)

V. Mathieu <i>et al.,</i>	arXiv:1708.07779
A. Jackura <i>et al.</i> ,	arXiv:1707.02848
V. Mathieu <i>et al.,</i>	arXiv:1704.07684
A. Pilloni <i>et al.,</i>	PLB772, 200
J. Nys <i>et al.,</i>	PRD95, 034014
A. Blin <i>et al.,</i>	PRD94, 034002
C. Fernandez-Ramirez et al.,	PRD93, 034029; PRD93, 074015
V. Mathieu <i>et al.,</i>	PRD92, 074013
V. Mathieu <i>et al.,</i>	PRD92, 074004
P. Guo <i>et al.,</i>	PRD92, 054016; PLB771, 497
I. Danilkin <i>et al.,</i>	PRD91, 094029
M. Shi <i>et al.,</i>	PRD91, 034007
	V. Mathieu <i>et al.</i> , A. Jackura <i>et al.</i> , V. Mathieu <i>et al.</i> , A. Pilloni <i>et al.</i> , J. Nys <i>et al.</i> , A. Blin <i>et al.</i> , C. Fernandez-Ramirez <i>et al.</i> , V. Mathieu <i>et al.</i> , V. Mathieu <i>et al.</i> , P. Guo <i>et al.</i> , I. Danilkin <i>et al.</i> , M. Shi <i>et al.</i> ,

π , ρ photoproduction

Test factorization on the simplest cases

- 1. Neutral pion photoproduction
- 2. Charged pion photoproduction
- 3. Rho meson photoproduction

$$\gamma p \to \pi^0 p$$

Mathieu et al. (JPAC), PRD92, 074013

$$\gamma p \rightarrow \pi^+ n$$

Pion dominate very small |t| :

Factorization of Regge residues:0.0010.010.11 $(\lambda_{\gamma}, \lambda_{\pi}) = (1, 0)$ and-t (GeV2) $(\lambda_{p}, \lambda_{n}) = \left(-\frac{1}{2}, +\frac{1}{2}\right)$ $A_{-\frac{1}{2}\frac{1}{2}\frac{1}{2}}^{10} \propto \frac{-t}{m_{\pi}^{2} - t}$ $(\lambda_{p}, \lambda_{n}) = \left(+\frac{1}{2}, -\frac{1}{2}\right)$ $A_{\frac{10}{2}-\frac{1}{2}\frac{1}{2}} \propto \frac{-t}{m_{\pi}^{2} - t}$ $(\lambda_{p}, \lambda_{n}) = \left(+\frac{1}{2}, -\frac{1}{2}\right)$ $A_{\frac{10}{2}-\frac{1}{2}}^{10} \propto \frac{-t}{m_{\pi}^{2} - t}$ William's Poor man absorption: $\rightarrow \frac{-m_{\pi}^{2}}{m_{\pi}^{2} - t}$

Mathieu (JPAC), in progress

KN scattering and the $\Lambda(1405)$

Coupled-channel K matrix model (up to 13 channels per partial wave), analyticity in angular momentum enforced, fit to KSU partial waves

One of the $\Lambda(1405)$ poles is out of the trajectory \rightarrow non 3-q state

Fernandez-Ramirez *et al.* (JPAC), PRD93, 034029 Fernandez-Ramirez *et al.* (JPAC), PRD93, 074015

$\psi^{(\prime)} \rightarrow \pi^+ \pi^- \pi^0$ within dual models

