Written test of Advanced Quantum Mechanics

Alessandro Pilloni (Dated: 18/01/2024)

Exam time: 2 hours. You can use the Clebsch-Gordan sheet by PDG.

EXERCISE 1

We consider a system of two identical particles A and B, having mass m and spin 1. The hamiltonian in the center of mass is given by:

$$H = \frac{\mathbf{p}^2}{2\mu} + \frac{1}{2}\mu\omega^2 \mathbf{r}^2 + \frac{\alpha}{\hbar}S_z \tag{1}$$

where p and r are the relative momentum and relative coordinate, and $\mu = m/2$ is the reduced mass. We take $\alpha \ll \hbar \omega$.

- 1. Calculate the commutator $[H, J^2]$, where J = L + S, L the orbital angular momentum, and S the total spin.
- 2. Determine the spectrum (i.e. the eigenstates, and the associated energies and degenerations) up to $E < 3\hbar\omega$.
- 3. Consider the normalized state:

$$|\psi\rangle = \delta |n = 0, l = 0, l_z = 0\rangle |s = 0, s_z = 0\rangle + \gamma |n = 1, l = 1, l_z = 0\rangle |s = 1, s_z = 0\rangle$$
(2)

where δ and γ are real numbers. Determine δ and γ , assuming that a measurement of J^2 gives $6\hbar^2$ with probability 1/3.

EXERCISE 2

Consider a particle of spin 1 with Hamiltonian:

$$H = \frac{\boldsymbol{p}^2}{2\mu} + \frac{1}{2}\mu\omega^2\boldsymbol{r}^2 + \frac{\alpha}{\hbar}\boldsymbol{J}^2$$
(3)

with $\alpha \ll \omega$, $\boldsymbol{J} = \boldsymbol{L} + \boldsymbol{S}$.

- 1. Calculate energies and degenerations of the first 4 levels.
- 2. Consider the state $|\psi\rangle = |n = 1, l = 1, l_z = 0\rangle |s = 1, s_z = 1\rangle$. Calculate the time evolution, and the mean values of L_z , L^2 , S_z , J^2 as a function of time.
- 3. When the result is time independent, comment about that.