Written test of Advanced Quantum Mechanics

Alessandro Pilloni

(Dated: 29/01/2024)

Exam time: 2 hours. You can use the Clebsch-Gordan sheet by PDG.

EXERCISE 1

A particle of mass m and spin $1 / 2$ moves in 3D space according to the following Hamiltonian:

$$
\begin{equation*}
H=\frac{\boldsymbol{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \boldsymbol{r}^{2}+\frac{\alpha}{\hbar^{2}}\left(\boldsymbol{L} \cdot \boldsymbol{S}+\hbar J_{z}\right) \tag{1}
\end{equation*}
$$

with $0<\alpha \ll \hbar \omega$. We consider the following states:

$$
\left.\left|\psi_{1}\right\rangle=\left|\begin{array}{lll}
1 & 1 & -1\rangle
\end{array}\right|+\right\rangle, \quad\left|\psi_{2}\right\rangle=\left|\begin{array}{lll}
1 & 1 & 1
\end{array}\right\rangle|+\rangle, \quad\left|\psi_{3}\right\rangle=\left\lvert\, \begin{array}{lll}
0 & 0 & 0\rangle|+\rangle, \tag{2}
\end{array}\right.
$$

using the notation $|n \ell m\rangle\left|s=\frac{1}{2} s_{z}= \pm\right\rangle$.

1. Discuss whether the three states are eigenstates of the Hamiltonian or not, and why.
2. Calculate the time evolution for the state $\left|\psi_{1}\right\rangle$.
3. For the same state, calculate the probability as a function of time for a measurement of S_{x} to be $\hbar / 2$.

Hint: $| \pm\rangle=\frac{1}{\sqrt{2}}\left(|+\rangle_{x} \pm|-\rangle_{x}\right)$.

EXERCISE 2

Two identical particles of spin $1 / 2$ are indicated with A and B and are vinculated to a spherical surface of unit radius, with the following Hamiltonian:

$$
\begin{equation*}
H=\frac{\epsilon}{\hbar^{2}}\left(\boldsymbol{L}_{A}^{2}+\boldsymbol{L}_{B}^{2}+\boldsymbol{S}_{A} \cdot \boldsymbol{S}_{B}\right), \tag{3}
\end{equation*}
$$

with $\epsilon>0$. The system is not studied in the center of mass frame.

1. Determine the spectrum and degeneracies for energies up to $E<\frac{5}{2} \epsilon$
