Written test of Advanced Quantum Mechanics

Alessandro Pilloni

(Dated: 13/02/2024)

Exam time: 2 hours. You can use the Clebsch-Gordan sheet by PDG.

EXERCISE 1

A particle of mass m and spin 1 moves in 3D space according to the following Hamiltonian:

$$
\begin{equation*}
H=\frac{\boldsymbol{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \boldsymbol{r}^{2}+\frac{\epsilon \omega}{\hbar}\left(L_{z}+2 S_{z}\right) \tag{1}
\end{equation*}
$$

with $\epsilon \ll 1$. At $t=0$ the particle is in a state $|\psi\rangle$ such that:
(i) A measurement of energy gives $E<3 \hbar \omega$;
(ii) $\langle\psi| S_{z}|\psi\rangle=-\hbar$;
(iii) A measurement of L_{z} never gives zero.

Then:

1. Determine the most general $|\psi\rangle$.
2. Pick the state satisfying $\langle\psi| L_{x}^{2}|\psi\rangle=0$.
3. With the latter, calculate the possible results of a measurement of \boldsymbol{J}^{2} and the respective probabilities.

EXERCISE 2

Two identical particles of spin $1 / 2$ are vinculated to a spherical surface of radius R. In the center of mass frame, the dynamics are given by the following Hamiltonian:

$$
\begin{equation*}
H=\frac{\vec{L}^{2}}{2 m R^{2}}+\alpha \vec{L} \cdot \vec{S} \tag{2}
\end{equation*}
$$

where $0<\alpha \ll 1 / m R^{2}$.

1. Calculate the first four energy levels and the respective degenerations.
2. Calculate the mean values of L_{z} e L_{x} on the first excited state. Does the result depend on time?
