Written test of Advanced Quantum Mechanics

Alessandro Pilloni (Dated: 13/02/2024)

Exam time: 2 hours. You can use the Clebsch-Gordan sheet by PDG.

EXERCISE 1

A particle of mass m and spin 1 moves in 3D space according to the following Hamiltonian:

$$H = \frac{\boldsymbol{p}^2}{2m} + \frac{1}{2}m\omega^2 \boldsymbol{r}^2 + \frac{\epsilon\omega}{\hbar} \left(L_z + 2S_z\right) \tag{1}$$

with $\epsilon \ll 1$. At t = 0 the particle is in a state $|\psi\rangle$ such that:

- (i) A measurement of energy gives $E < 3\hbar\omega$;
- (ii) $\langle \psi | S_z | \psi \rangle = -\hbar;$
- (iii) A measurement of L_z never gives zero.

Then:

- 1. Determine the most general $|\psi\rangle$.
- 2. Pick the state satisfying $\left\langle \psi \right| L_{x}^{2} \left| \psi \right\rangle = 0.$
- 3. With the latter, calculate the possible results of a measurement of J^2 and the respective probabilities.

EXERCISE 2

Two identical particles of spin 1/2 are vinculated to a spherical surface of radius R. In the center of mass frame, the dynamics are given by the following Hamiltonian:

$$H = \frac{\vec{L}^2}{2mR^2} + \alpha \, \vec{L} \cdot \vec{S} \tag{2}$$

where $0 < \alpha \ll 1/mR^2$.

- 1. Calculate the first four energy levels and the respective degenerations.
- 2. Calculate the mean values of $L_z \in L_x$ on the first excited state. Does the result depend on time?