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Introduction
It is conceivable that a truly deep advance in theoretical physics

would involve writing down QED without writing Am

A. Zee

We want explore possible change of variables in gauge theories

driven by the fact that some (non-perturbative) properties of gauge
theories look more natural with a clever choice of the variables

There is no general theory of changes of variables in functional
integrals, only simplest cases have been formally studied
(Anselmi, EPJ C73, 2338)
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Introduction
0000

ASD curvature

In particular, we are interested in the (non-linear) map
from the gauge-fixed connection to the anti-selfdual curvature

Am — F.(A)

with

_ * 1
an:an_ Fmn = mn_§5mnrsFrs

Fmn = amAn - 8nAm + i[Ama An]

The map is (locally) 1-to-1:
» 4 components of A, — 1 gauge fixing condition

» 6 component of skew-symmetric F,,, — 3 ASD conditions

Gauge theories in ASD variables
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ASD curvature

Yet, an ASD tensor lives in the (1,0) representation of the
Euclidean rotation group: F,,, contains a (chiral) 3-vector

0 —E3 + H3 E> — H, Ei—H:
| B 0  —Ei+H E—H,
mn —E> + H> Ei — H: 0 E; — H3

—-E+H —-Ex+Hy, —E3+Hs 0

F... is gauge-covariant (F& = g 1Fg)
> eigenvalues are gauge-invariant

> nice property for non-perturbative applications
(compute correlators like (tr F,2(x) tr F,2(0))...)
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Introduction
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Purpose of the talk

We want to establish that gauge theories

usually formulated in terms of the connection A,
are perturbatively equivalent to gauge theories
formulated in terms of the ASD curvature F,,,

We evaluate the 1-loop effective action of the mapped theory
and show that is identical to the original one

In particular, the 1-loop 3 function
of the mapped theory coincides with the original one
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Nicolai map
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Nicolai map

A. Pilloni

A map to ASD variables was explored many years ago
in SUSY context.

Nicolai proved that in any supersymmetric theory there exists a
change of variables that sets the lagrangian in gaussian form
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Nicolai map

A map to ASD variables was explored many years ago
in SUSY context.

Nicolai proved that in any supersymmetric theory there exists a
change of variables that sets the lagrangian in gaussian form

DFFV explored N' =1 SUSY YM: such a map is indeed the
change of variables to the ASD curvature

Hmn = F,;n(A) = (5mr5ns - %Emnrs) (8[m,An] +i [Am7An])
in the light-cone gauge AT = Ag + A3 =0

This definition of F~ and of the light-cone are consistent in (2, 2) signature
because F~ becomes complex in Minkowskian signature
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N =1 SUSY YM

The partition function is

Z= /5A SASN exp [— /d4x tr (F2, + Xm)]

2
4Ngy, A+=0

We use tr F2,, = Ltr .2 +tr F*F, and [ d*x tr F*F = 2NQ (47)?

n

_ (4‘")20 |: 1

Z= /5A5>\55\e %y exp 4Ng§v/d4x tr (%Fm_3+5\¢/\)]

AT=0

Integrating over A\, X we get

_(4m)%Q
Z= /5Ae %l exp [—

/ d*x trF,;,ﬂ Det [

2
8Ngiy, Ar—o
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N =1 SUSY YM

We change variables, a Jacobian occurs

_(47r)22Q
Z = /5,ue 6w exp [—

0A
/d4x tr u,zm,] Det [p Det —

8 Ngﬁv O

At=0
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N =1 SUSY YM

We change variables, a Jacobian occurs
_(47r)22Q
Z = /5,ue 6w exp [—

The Jacobian in light-cone gauge reads (DFFV)

0A
/d4x tr /ﬁnn] Det [p Det —

8 Ngﬁv O

At=0
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N =1 SUSY YM

We change variables, a Jacobian occurs
_(47r)22Q
Z = /5,ue 6w exp [—

The Jacobian in light-cone gauge reads (DFFV)

0A
/d4x tr /ﬁnn] Det [p Det —
o

2
8Ngiy Ao

-t L
Z= /9 28 - d*x t
/ pe exp[ 8Ng5v/ * r“’""]

» No interaction appears in partition function — good!

At=0

» For Q # 0 no renormalization occurs, 3(g) = 0 — bad!
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Nicolai map
[e]ele] }

Some (seemingly desperate) questions

» A faithful map must conserve the same properties as the
original theory, but the 3 function changes!

» Where is the weak point of the argument? Light-cone gauge?
» Can we trust non-linear changes of variables?

» No cancellation occurs outside light-cone gauge and
N =1 SUSY YM, can we explore further?

The Nicolai map was labelled as a formal relation, and forgotten
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Non-perturbative 8 functions

90000000

Non-perturbative 3 function of N' =1 SUSY YM

The puzzle of the § function of Nicolai map for @ # 0

was solved in 2010 by Bochicchio (talk at GGlI, arXiv:1107.4320)
In the latter partition function, we have supposed

the map is 1-to-1 everywhere
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Non-perturbative 8 functions

90000000

Non-perturbative 3 function of N' =1 SUSY YM

The puzzle of the § function of Nicolai map for @ # 0
was solved in 2010 by Bochicchio (talk at GGlI, arXiv:1107.4320)

In the latter partition function, we have supposed
the map is 1-to-1 everywhere

If not, we must take into account separately
the zero modes of the Jacobian of the map

*LT);Q 1 4 2
i 2
7 — /5,ue §w exp <_8Ngﬁv /d X tr (fmn) )

. pf { 9AK) 9A(L)
Anb[A];nf[A]/ < >
M PEm (), n(w))
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Non-perturbative 8 functions

0O®000000

Non-perturbative 3 function of N' =1 SUSY YM

Z vanishes unless we insert the correct number
of fermionic zero modes

zz/mamx exp [— /d4x tr (Fan £ ADA) | Ao A

4Ng5v
The only observable we can evaluate with this non-perturbative
approach is the gluino condensate

Anyway, it is enough to extract the S function

We will reproduce NSVZ 3 function and we will demonstrate the
gluino condensate is localized on instantons
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Non-perturbative 8 functions
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The localization on instantons

We make the functional integral computable
by cohomological localization

In the language of differential forms

dw =0 d’> =0

Z:/exp[w]:/exp[w—i-da]

We can add an exact form to a closed form without changing the
cohomology class and the value of the integral

We can simplify the action by dropping all exact forms!

In N =1 SUSY YM, the existence of Nicolai map implies the
existence of a nilpotent charge Q

then
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Non-perturbative 8 functions
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The localization on instantons

In the original Z in terms of A,,, we can introduce anticommuting
auxiliary fields pmn, and 7, and rewrite the gluino determinant

_ 1 _
/d)\ dX exp [—SN ; /d4xwx] — Det
Ew
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Non-perturbative 8 functions
[e]e]e] lelele]e]

The localization on instantons

In the original Z in terms of A,,, we can introduce anticommuting
auxiliary fields pmn, and 7, and rewrite the gluino determinant

D Dti mn r
et [) = De /dpdnexp[SN /d X p A 77]

Inverse of Nicolai Jacobian
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Non-perturbative 8 functions
[e]e]e] lelele]e]

The localization on instantons

In the original Z in terms of A,,, we can introduce anticommuting
auxiliary fields pmn, and 7, and rewrite the gluino determinant

D Dti mn r
et [) = De /dpdnexp[SN /d X p A n]

Finally we introduce a commuting auxiliary field E

(4m)%Q

Zn:/(SE(SA(Spéne_ %W ...

1 §F,
— d4 t E2 .EmnF_ — mnﬂ r
eXP[ 8Ng2, X r< mn 1 mn ~ 1Pmn=ss 77)]
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Non-perturbative 8 functions

[e]e]e]e] Jelele)

The localization on instantons

In this form, Z enjoys the Parisi-Sourlas BRS symmetry

Qers A = (7)7 Q3rs =0

QBRS n= E2 _ QBRS (pE)
@ersp = E

Qgrs E = 0 and we can drop the E2 term

_(4m)3Q

Zn:/éEcSA(Sp(Sne % ...

1 ) _ . OF
exp [_SNgﬁv /d4x tr </Em,,an — /pm,,(m""’n,)]

r

A. Pilloni
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Non-perturbative 8 functions

[e]e]e]e] Jelele)

The localization on instantons

In this form, Z enjoys the Parisi-Sourlas BRS symmetry

Qers A = (7)7 Q3rs =0

QBRS n= E2 _ QBRS (pE)
@ersp = E

Qgrs E = 0 and we can drop the E2 term

n—/Mexp( ) Q)5( )Dt<65i\n>

Z is localized on instantons

A. Pilloni
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Wilsonian 3 function of N' =1 SUSY YM

Going back to the mapped Z, we know the number of zero modes
around instantons backgrounds!

(47\-)2 7(’7(>
7 — o s, AmelAl-indA /
! (1)
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Wilsonian 3 function of N' =1 SUSY YM

Going back to the mapped Z, we know the number of zero modes
around instantons backgrounds!

am)? Alp) 9 (
7 :ef(zg)ngAzwo—%zNQ / Pf< om >
! m PG (1), ( )
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Wilsonian 3 function of N' =1 SUSY YM

Going back to the mapped Z, we know the number of zero modes
around instantons backgrounds!

am)? Alp) 9 (
7 :ef(zg)ngAzwo—%zNQ / Pf< om >
! m PG (1), ( )

We exponentiate the cutoff and get the expression for the
renormalized constant

(47)* Q _ 3NlogA  (47)°Q
282,(N\) (ar)?  2g2,(n)
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Wilsonian 3 function of N' =1 SUSY YM

Going back to the mapped Z, we know the number of zero modes
around instantons backgrounds!

am)? Alp) 9 (
7 :ef(zg)ngAzwo—%zNQ / Pf< om >
! m PG (1), ( )

We exponentiate the cutoff and get the expression for the
renormalized constant
3N 5

Blew) = @ ——&w
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Non-perturbative 8 functions
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Canonical 3 function of ' =1 SUSY YM

From the one-loop exact 5(gw ) we derive the NSVZ formula by
rescaling the fields in canonical form

2 5Ac SAc
/ = exp _M /\nb_nzfgnb_nf/ M
283y Mo PF(neme)
We include extra-powers of g in a non-analytic redefinition of g
1 1 N 2N |
52 — 5,2 T, 2088
285, 28 (4nm)?
and get
__3N_,3
_ @8
Bg) = w
(4m)°

A. Pilloni Gauge theories in ASD variables



Non-perturbative 8 functions
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Summary on N' =1 SUSY YM

» In ASD variables, the localization on instantons
emerges naturally with a real non-perturbative argument

» In usual variables, the cancellation
of non-zero-modes contibutions
was explicitly found at 1-loop (D’Adda,Di Vecchia, PRL73B(1978))
and then argued at any order (NSVZ, NPB 229 (1983))

» This change of variables has given
some deeper understanding of the theory
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Perturbative equivalence (this is my talk!)

Non-perturbative arguments allow us to check the correctness of
the mapping, but only for @ # 0 and for special observables!

They will never provide a general demonstration that such a
change of variables actually works!
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Perturbative equivalence (this is my talk!)

Non-perturbative arguments allow us to check the correctness of
the mapping, but only for @ # 0 and for special observables!

They will never provide a general demonstration that such a
change of variables actually works!

However, if a true equivalence holds, it must be manifest
order by order in perturbation theory!

But perturbation theory lives on trivial bundles (Q = 0),
we have no zero modes that contribute to [!

Where can we look for missing contributions?
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Effective action

We must go back to the very start.
The generating functional Z[J] of pure YM is

1
Z[J] = /5A exp [—MSYM [A] + JA]
The effective action I'[A] is

exp (~T1A]) = Z [N exp(~JA) = / 5A exp [—Z;ZSYM [A] + JA— JA
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0Oe0000000000000
Effective action

We must go back to the very start.
The generating functional Z[J] of pure YM is

1
Z[J] = /5A exp [—MSYM [A] + JA]
The effective action I'[A] is
~ ~ 1 ~
exp (—r[A]) = Z [J]exp(—JA) = /5A exp [_ngSYM [A] + JA— JA

We expand the exponent

1 65ym

1 ,
—?SYM[A]_ 222 A

1 S

- SA%+ JSA
4 4g2  §A?

A
cancelled by EOM
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0Oe0000000000000
Effective action

We must go back to the very start.
The generating functional Z[J] of pure YM is

1
Z[J] = /5A exp [—MSYM [A] + JA]
The effective action I'[A] is
~ ~ 1 ~
exp (—r[A]) = Z [J]exp(—JA) = /5A exp [_ngSYM [A] + JA— JA
We expand the exponent

1 825¢m

TV 5A°
4g2 JA? A

1 -
~gz oAl -

The external current does not contribute
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Perturbative equivalence
000000000000 000

Effective action

1 625vm

TV 5A2
4g2 JA? A

1 -
g

The external current does not contribute

This is true because the external source J
couples linearly to the field A

Performing a nonlinear map, this is not true anymore!
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Spinorial notation

We introduce a spinorial SU(2) ® SU(2) notation

with
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Perturbative equivalence
0O00@00000000000

Spinorial notation

We introduce a spinorial SU(2) ® SU(2) notation

: 1 .
()5 = > (1) mp (8™")% 5 p anti-hermitian traceless

(u)dﬂ- = (u)é‘ﬁ- + C(Sg ¢ = Dm(A)A, scalar auxiliary field

(™) = 7 [0 (G = (67 (™)

o =3
(5™ = % (B (0" = (3" (™) 5]

o™ and ™" project onto SD and ASD states

Gauge theories in ASD variables
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The explicit calculation in covariant a-gauges

The generating functional in a-gauge in terms of Ay, is

1 1
Z[J] = /5A dc exp [— 4g2/d4x tr (F,;n)2 "ol / d*x tr(c?)

+ / d*x 2tr JpAm| App 5<Dm(2\)Am - c)

A'is a classical field satisfying the EOM

1 35w
- 282 A

A
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The explicit calculation in covariant a-gauges

The generating functional in a-gauge in terms of Ay, is

1
Z[J] = /5A dc exp [— 4iﬂ/d“x tr (F,;n)2 "ol / d*x tr(c?)

+ / d*x 2tr JmAm| App 5(Dm(2\)Am - c) / 5146 (Fmy — fmn)

We insert a resolution of the identity
The resolution and the gauge-fixing condition realize
the change of variables A, — (u,c) =v
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The explicit calculation in covariant a-gauges
The map in spinorial indices reads
_ 1 - -
v? = OAT = SFPCARAT — £0C ATGAT T

and the generating functional

1

1 & T B VN
Z[J] :/(SV exp [—4g2/d4x(ya) 5[635?— T(1-1) 5§5§7] (v )A-Y(S

Q=

+ / d*x (J2)% [A(z/)]fm] Det%‘AFp

This contains O(5u2)
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The explicit calculation in covariant a-gauges
If we expand A = A + JA, we get

S = D¥*5AC — %f"’”w(mc

that means
ov

sal — P

We can perturbatively invert (G = (—A)™! 1)
5A* ) = —G D> 51°
=
542 — —%fabc G0 (Gov® d Gosve)
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Perturbative equivalence
0000000800 00000

The explicit calculation in covariant a-gauges

ov _ P a(2) _ 1 abc b<T c
54, =D A= G8<G61/ acaay)
The EOM is
i 7Y 1, = el Mﬂ
2g2 s « (SVdﬁ o
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Perturbative equivalence
0000000800 00000

The explicit calculation in covariant a-gauges

571/ P a(2) _ 1 abc b<T c
Mﬁ_o 6T = —~f G8<G61/ acaay)
The EOM is
1 o -y OAs;
iy, T-Jpp 1] v
2g2 a A 51/0'/8 ~

i

We choose the background field to be transverse, i.e. €=0,70 =[i
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Perturbative equivalence
0000000800 00000

The explicit calculation in covariant a-gauges

5l P a(2) _ labc b<T c
Mﬁ_D 6T = —~f G8<G61/ acaay)
The EOM is
1 o -y OAs;
iy, T-Jpp 1] v
2g2,u A Sl |

i

We choose the background field to be transverse, i.e. €=0,70 =[i
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Perturbative equivalence
0000000800 00000

The explicit calculation in covariant a-gauges

~ va.
(‘SLZ D  sA = —%fabc Go <G61/b P GaayC)
We invert the EOM
_. 1
J”/5 — 2g2 'u 5 D’B(S
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Perturbative equivalence
0000000800 00000

The explicit calculation in covariant a-gauges

_ va.
;L: D  sA = —%fabc Go <G61/b P GaayC)
We invert the EOM
_. 1
J”/5 — 2g2 'u 5 D’B(S

Hence, the quadratic part of JA is
y @ _ L cabe, a5 b5
(tr7°6°) D = =5 70 i 5 60 (6ovtd coove)

1 b ~ b /7 _ 1 b b
= —@fa “tr ji?ov® (0G) GOSv° = @51/ 0°6v°
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Perturbative equivalence
0000000080 00000

The explicit calculation in covariant a-gauges
We now integrate over v to get
1 -1 bc bc
Svexp | — == Sym + JA| = Det2 [— 1. 6%+ 0 ]
2g2 o
We write the Jacobian as
Det 22 = Det! (D) = Det™2 (DD)
ov
Therefore, the product of the determinants reads
1
— 15 1
[Det (D) Det (~ 1, +0) Det (D)| > =Det 2 [-D1

and working out in detail the spinor notation

1 = & A& z c ey
Det 2 [_ (DD)) 8% +% (1 - 1) D,;D% + D; | O% }Bp Df”]

A. Pilloni
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The explicit calculation in covariant a-gauges

and working out in detail the spinor notation

D —% DD s¢ L1 (1-1\p .D% 1 pD? Obc;yo"[)bp

et —( )p g+§( -3) o + D55 | Ozt gyt
but DD = Al +iad Ft and DOD = p, so
1 . . _ . :

Det™2 [~A030% + FP(F+2))9% + % (1-2) DD + 70 (u7) 307 |
In vector notation

1 1
Det™ 2 [ — Ao + (1 - > DmD, + fa€Fta 4 fabcﬂfnn}
«

F+4u=2F
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The explicit calculation in covariant a-gauges

and working out in detail the spinor notation

. o . Al _
_ = ¥ 1 1 z b
Det™ 2 [— (DD)p 5g +5 (1 — a) D,yBDap + D’W [OZtC} b Dfp:|

but DD = Al +iad Ft and DOD = p, so

1 : ; Ad :
Det 2 |—AJ07 + F<(F*2)6% + 1 (1=2) D¥D_ 5 + £74<(u?) 537

In vector notation

1 1
Det ™2 {—Aémn + <1 - > DDy + 2fabCF,fm]
«

This is the same determinant obtained integrating over
the gauge connection §A in a-gauge
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A geometric demonstration

We show a geometric demonstration valid in any gauge

We introduce 1, 2-forms

A:Adem J:deXm
F = Fpndxm A dx, = fhmn dXm A dxp
F=dA+iANA

The generating functional reads

Z[J]:/éuexp [&22/#/\#+/*J/\A]5(Q(A)) Det?:AFp
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A geometric demonstration

We show a geometric demonstration valid in any gauge

We introduce 1, 2-forms

A:Adem J:deXm
F = Fpndxm A dx, = fhmn dXm A dxp
F=dA+iANA

The generating functional reads

Z[J]:/éuexp [&22/#/\#+/*J/\A]5(Q(A)) Det?:AFp

5(G(A)) restricts the determinants to a sub-manifold

A. Pilloni Gauge theories in ASD variables



A geometric demonstration

The map reads

j=2P F=2P" (F(Z\) +ds AGA+ i6AN 5A)

fi=2P" F(A)
op=2P" (d;‘ ANOA+ iI6AN (5A)
We invert perturbatively

SAW) = % (P=d3A) " du

SAR) — —ﬁ (P=dzA) " [(P—d;\A)‘1 Su A (Pdyn)

The EOM reads

(m]

0A
ﬁ:—4g2*J/\5—

I
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A geometric demonstration

The map reads

j=2P F=2P" (F(Z\) +ds AGA+ i6AN 5A)

fi=2P" F(A)
op=2P" (d;‘ ANOA+ iI6AN (5A)
We invert perturbatively

SAW) = % (P=d3A) " du

SAR) — —ﬁ (P=dzA) " [(P—d;\A)‘1 Su A (Pdyn)

The EOM reads

(m]

1 _ .
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Perturbative equivalence
0000000000 0e000

A geometric demonstration

8A?) and the saddle point equation determine the quadratic form
that contributes to the effective action

1 1 52A
—  SuASu+ = [ kA —= 62
exp[8g2/ JTAN ,u+2/* 52 ,u]

The red term reads

- _é (P=da A R)A(P~dan) " [(P=dan) ™" 8 (P~dan) ™ oy
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Perturbative equivalence
0000000000 0e000

A geometric demonstration

8A?) and the saddle point equation determine the quadratic form
that contributes to the effective action

1 1 52A
—  SuASu+ = [ kA —= 62
exp[8g2/ JTAN ,u+2/* 52 ,u]

The red term reads

= 5iA (Pdan) " oA (P dan) ™" ou
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Perturbative equivalence
0000000000 0e000

A geometric demonstration

8A?) and the saddle point equation determine the quadratic form
that contributes to the effective action

1 1 52A
—  SuASu+ = [ kA —= 62
exp[8g2/ JTAN ,u+2/* 52 ,u]

The red term reads

= ézP*F A (P=dan) " oA (P dan) " op
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Perturbative equivalence
0000000000 0e000

A geometric demonstration

8A?) and the saddle point equation determine the quadratic form
that contributes to the effective action

1 1 52A
—  SuASu+ = [ kA —= 62
exp[8g2/ JTAN ,u+2/* 52 ,u]

The red term reads

= ézP*F A (P=dan) " oA (P dan) " op

Hence the quadratic form is

&;2[/5MA5N+2i/P—FA (P=dah) " oA (P_dA/\)_lé,u]
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A geometric demonstration

Integrating over dpu,

Det /2142 (P=dan) " PTF A (P7dan) | _

The Jacobian reads

Det ‘;;‘ — Det (P~ dan) " = Det /2 (P~ dan) Det /2 (P~ daA)

All together
Det /2 [P~da A P da A+2i P"FA] ;g

Just like the original determinant in YM effective action!
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The evaluation of the 3 function in Feynman gauge

As a check, we evaluate the g function in Feynman gauge, where
we can extract the counterterms from each determinant separately

_Swm 1 oA
Z=e 2% /6V exp | —=—=Sym + JA| Det — App
2g2 dv
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The evaluation of the 3 function in Feynman gauge

As a check, we evaluate the g function in Feynman gauge, where
we can extract the counterterms from each determinant separately

Sym

_ 1 A
Z=¢ 2* Det 2 [—]lébc + 0%¢| Det (2— AFp
v
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The evaluation of the 3 function in Feynman gauge

As a check, we evaluate the g function in Feynman gauge, where
we can extract the counterterms from each determinant separately

Sym

_ 1 A
Z =e 2% Det 2 [—]lébc + Obc} Det(;— Arp
v
We evaluate the Jacobian

Det%\ = Det™! (D) = Det 2 (DD)
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The evaluation of the 3 function in Feynman gauge

As a check, we evaluate the g function in Feynman gauge, where
we can extract the counterterms from each determinant separately

Sym

_ 1 A
Z =e 2% Det 2 [—]lébc + Obc} Deté— Arp
ov

We evaluate the Jacobian

1
Det 57 = Det™ 2 (*A(Smn + i ad F,—Ti;n)
14
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The evaluation of the 3 function in Feynman gauge
As a check, we evaluate the g function in Feynman gauge, where

we can extract the counterterms from each determinant separately

Syl

_5wm 1 A
Z=e 20 Det™ 2 {—]lébc+ Obc} Det(s—AFp
ov

We evaluate the Jacobian
0A 1

1
Det = = Det™ 2 (—~Adny) Det 2(1+( A)*liadF;n)

We can evaluate the orbital term

1 N A
Det 2 (—=Ad,,) Det(—A) =exp | ——3— log — S
(— ) ( ) P[ (47T)2 g'u YM]

App
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The evaluation of the 3 function in Feynman gauge

As a check, we evaluate the g function in Feynman gauge, where
we can extract the counterterms from each determinant separately

Syl

_ S 1 A
Z=e 20 Det™ 2 [—]lébc + Obc} Det(;— Arp
v
We evaluate the Jacobian
1 .
Det 2 = Det™2 (—Ady) Det 2 (1 +(—A)tiad F;n)
v
As for the spin term (% of pure YM spin term)

1 2N
Det™ 2 (1 +(-A)tad F,ﬁn) = exp [(2

A
log — &
47T) g M YM]
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The evaluation of the 3 function in Feynman gauge

Finally, the extra determinant

1 2N A
Det 2 (—1+0) = —— log— & ]
€ ( ) = exp [(477)2 g# YM

provides the missing term
Svym Svym g — 2N — 2N

- S - og ™ s
262()  282(A) (@n) e
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The evaluation of the 3 function in Feynman gauge

Finally, the extra determinant

1 2N A
Det 2 (—1+0) = —— log— & ]
€ ( ) = exp [(477)2 g# YM

provides the missing term
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Conclusions

Conclusions

» We have established the perturbative equivalence of gauge
theories usually formulated in terms of the connection A,
with gauge theories formulated in terms
of the ASD curvature F,

» We have evaluated the 1-loop effective action of the mapped
theory and shown that is identical to the original one

» This argument generalizes order by order
in perturbation theory, since the map is perturbatively
invertible at any given order

» ASD variables are a new language to describe gauge theories
whose potentiality remains to be fully explored
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Conclusions

Conclusions

» We have established the perturbative equivalence of gauge
theories usually formulated in terms of the connection A,
with gauge theories formulated in terms
of the ASD curvature F,

» We have evaluated the 1-loop effective action of the mapped
theory and shown that is identical to the original one

» This argument generalizes order by order
in perturbation theory, since the map is perturbatively
invertible at any given order

» ASD variables are a new language to describe gauge theories
whose potentiality remains to be fully explored

Thank you
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A sketch of 3 function in pure YM
[ 1]

A sketch of 3 function in pure YM

An example of non-perturbative applications is the evaluation of
large-N pure YM 3 function by homological localization of
twistor Wilson loops (Bochicchio, JHEP 0905 (2009) 116)

_(47r)22Q 1
:/6,ue W exp <_8N d4x tr (mn) >

Det Z—A App A" / Pf —5 A(“)>

om

In Feynman gauge,

A 5N
Det(S—AF p= BFP) = 3

We can localize the functional integral on singular configurations
F~ = pupd(x - xp)
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A sketch of 3 function in pure YM
[ 1]

A sketch of 3 function in pure YM

An example of non-perturbative applications is the evaluation of
large-N pure YM 3 function by homological localization of
twistor Wilson loops (Bochicchio, JHEP 0905 (2009) 116)

~ 0 1 2
Z = /6,ue 6w exp <_8Ngﬁv /d4x tr (femn) >

Det 0A Afrp /\""[A]/ Pf <—6A(“) 5A(“)>
0 M

7‘“ dm ' om
We take into account the contribution from zero modes
/\”b[A] = ﬁéo) = — 2N
(4r)°
. . . Uy
We get the correct Wilsonian § function Sy = —(jﬂ)2g3
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A sketch of 3 function in pure YM
oe

A sketch of 3 function in pure YM

For the canonical g function, we rescale the fields and get

_LN g° | Ng® dlogZ

_ 3 (4n)® " (4n) logh

B_ AN 2
(47T)2g

LN g 3N g°

3 (4m)? 3 (4m)t

~

that reproduces the universal coefficients of perturbative 8 function
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